

### **Outline**

- Introduction to Weak Lensing Shear & Magnification
  - Magnification in COSMOS
- CFHTLenS Galaxy Cluster Catalogs (public)
- Cluster Magnification in CFHTLenS
  - Measurement & Modeling
  - Cluster Mass-Richness Scaling
- Cluster Shear in CFHTLenS
  - How does magnification compare with shear?
- Conclusions

# Introduction: Shear & Magnification

### **Gravitational Lensing**



Image: NASA/ESA Image: Mellier (1999)



### Weak Lensing

The 2 components of the Weak Lensing signal:

Shear ( $\gamma$ ): anisotropic focusing of light rays

→ **shapes** get distorted



MAGNIFICATION Convergence (κ): isotropic focusing of light rays

→ size & brightness change





### Dilution & Amplification

sky is stretched

sources get brighter



Lensing conserves surface brightness

**Image: SDSS** 

### Magnification with Number Counts

#### Number counts are altered:



 $n \rightarrow observed source #$ 

 $n_0 \rightarrow intrinsic source #$ 

 $\theta \rightarrow$  angle on sky between source and lens center

$$\alpha(m) = 2.5 \frac{d}{dm} \log n_o(m)$$

depends on lens mass depends on source # counts

$$\mu = \frac{1}{\left(1 - \kappa\right)^2 - \left|\gamma\right|^2}$$

#### Magnification µ:

gives lensing mass, assuming some model (e.g. NFW)



# Magnified Luminosity Function

We expect to observe more bright sources, and less faint sources, than we would in the absence of lensing.



Figure: Hendrik Hildebrandt

### Magnification by Clusters



- 5\sigma in COSMOS
- 44 X-ray-selected group lenses at 0.3 < z < 1
- 4500 Lyman-break galaxy sources at 3 < z < 5

#### Optimally-Weighted Cross-Correlation Function:

weight each source by its  $(\alpha-1)$ , to use the expectation from the source luminosity function (Menard et al. 2003)





### Magnification by Clusters



- 5σ in COSMOS
- 44 X-ray-selected group lenses at 0.3 < z < 1
- 4500 Lyman-break galaxy sources at 3 < z < 5

- Composite Halo Model: Fit a scaling relation to shear masses  $M_{mag} = a M_{shear}$
- Agreement with shear masses ✓

**MAGNIFICATION: 4.8**σ vs. SHEAR: 110



Ford et al. 2012

### Shear vs Magnification

- For fixed sources, shear has higher S/N
- But measuring shapes is hard (especially high z & from ground)
- Magnification only requires source detection, so background source density can be much higher
- Shear & Magnification have completely different systematic biases
- Magnification breaks the mass-sheet-degeneracy

$$\gamma = \frac{\Delta \Sigma}{\Sigma_{crit}}$$

$$\kappa = \frac{1}{2}$$

shear

magnification

Magnification & Shear are *complementary*.

Both should be exploited to maximize what we can learn from our observations.

### **CFHTLenS Clusters**



Canada-France-Hawaii Telescope Legacy Survey: 4 Wide fields ~ 154 deg<sup>2</sup>

### **3D-MF Galaxy Clusters**

- 3D-Matched-Filter Galaxy Cluster Finder (Milkeraitis et al. 2010)
- Searches for regions of sky matching expected luminosity profile & radial profile ⇒ Likelihood maps of sky
- 3D: discrete redshift bins
- Cluster Candidates = Peaks in Likelihood maps
- $\sim 18,000$  galaxy clusters 0.2 < z < 1

PUBLICLY AVAILABLE CLUSTER CATALOG: cfhtlens.org







### Cluster Lenses



- Completeness: 100% for  $\ge 2.5 \times 10^{14} \,\mathrm{M_{sun}}, > 86\%$  for  $\ge 5 \times 10^{13} \,\mathrm{M_{sun}}$
- False Detection Rate: < 1% for  $\ge 2.5 \times 10^{14}$  M<sub>sun</sub>, < 15% for  $\ge 5 \times 10^{13}$  M<sub>sun</sub>

### Richness N<sub>200</sub>



Ford et al. 2014b

#### N<sub>200</sub> includes all galaxies...

- within  $R_{200}$  estimated from shear
- brighter than absolute i Magnitude -19.35
- within  $\Delta z < 0.08 (1+z)$
- background density subtracted

### Cluster Distributions



Main Halo: NFW profile.

#### 2-halo term:

Account for neighboring halos.

#### **Cluster Miscentering:**

the center chosen by any cluster-finder is probably not the "real" center.

#### **Composite-Halo Fit:**

Account for the wide range of cluster  $M_{200}$  and z instead of fitting a single average mass, redshift.

$$\rho_{NFW} = \frac{\delta_c \rho_{crit}(z)}{(r/r_s)(1+r/r_s)^2}$$

Navarro, Frenk & White (1997)

NFW: 2 fit parameters ( $M_{200}$  &  $c_{200}$ )

+

**Mass-Concentration relation** 



Just M<sub>200</sub> parameter for each halo

Main Halo: NFW profile.

#### 2-halo term:

Account for neighboring halos.

#### **Cluster Miscentering:**

the center chosen by any cluster-finder is probably not the "real" center.

#### Composite-Halo Fit:

Account for the wide range of cluster  $M_{200}$  and z instead of fitting a single average mass, redshift.

- Dark matter is clustered
- Nearby halos contribute few % signal at large radii
- Depends on cosmology and cluster halo bias\*

\*We use ACDM and b(M,z) from Seljak & Warren (2004)

Main Halo: NFW profile.

#### 2-halo term:

Account for neighboring halos.

#### **Cluster Miscentering:**

the center chosen by any cluster-finder is probably not the "real" center.



George et al. 2012

#### **Composite-Halo Fit:**

Account for the wide range of cluster  $M_{200}$  and z instead of fitting a single average mass, redshift.

Wrong centers will dilute the signal on small scales.

Main Halo: NFW profile.

#### 2-halo term:

Account for neighboring halos.

#### Cluster Miscentering:

the center chosen by any cluster-finder is probably not the "real" center.

#### **Composite-Halo Fit:**

Account for the wide range of cluster  $M_{200}$  and z instead of fitting a single average mass, redshift.





Main Halo: NFW profile.

#### 2-halo term:

Account for neighboring halos.

#### **Cluster Miscentering:**

the center chosen by any cluster-finder is probably not the "real" center.

#### **Composite-Halo Fit:**

Account for the wide range of cluster  $M_{200}$  and z instead of fitting a single average mass, redshift.

Assume 3D-MF centers have a Gaussian distribution about the "true" centers



Ford et al. 2014a

$$P(R_{off}) = \frac{R_{off}}{\sigma_{off}^2} e^{-\frac{1}{2} \left(\frac{R_{off}}{\sigma_{off}}\right)^2}$$

Data points measured using mock catalogs of Kitzbichler & White (2007)

Main Halo: NFW profile.

#### 2-halo term:

Account for neighboring halos.

#### **Cluster Miscentering:**

the center chosen by any cluster-finder is probably not the "real" center.

#### **Composite-Halo Fit:**

Account for the wide range of cluster  $M_{200}$  and z instead of fitting a single average mass, redshift.

#### **Mass-Richness scaling relation:**

$$M_{200} = M_0 \left(\frac{N_{200}}{20}\right)^{\beta}$$

- Each measurement contains many stacked clusters
- Fit a scaling relation  $(M_0 & \beta)$
- Convert N<sub>200</sub> distribution to M<sub>200</sub>
- Account for range of M<sub>200</sub> & redshift

# Cluster Magnification in CFHTLenS

### Sources

- Lyman-break galaxies (u-dropouts)
- $\sim 120,000 LBGs$
- we know Luminosity Functions, optimal weight factor ( $\alpha$ -1)
- $z \sim 3$  (except for contamination...)

$$n(m,\theta)dm = \mu^{\alpha-1}n_o(m,\theta)dm$$



van der Burg et al. 2010



### All clusters stacked





#### **Composite - NFW Model:**

- ✓ Accounts for range of masses & redshifts
- ✓ Fits a power-law mass-richness scaling relation

### **Richness Bins**

Strength of magnification signal scales with  $\overline{N_{200}}$ 



### Mass - Richness Scaling



### **Redshift Bins**



### **Redshift Bins**



### Contamination



Ford et al. 2014a

- Intrinsic physical clustering between clusters and low-z galaxy contaminants?
- Physical cross-correlation signal should be order of magnitude stronger than lensing-induced correlations...

Main Halo: NFW profile.

#### 2-halo term:

Account for neighboring halos.

#### **Cluster Miscentering:**

the center chosen by any cluster-finder is probably not the "real" center.

#### **Composite-Halo Fit:**

Account for the wide range of cluster  $M_{200}$  and z instead of fitting a single average mass, redshift.

#### **Source Contamination:**

low-z contamination leads to nonlensing correlations due to lens-source physical clustering.



Ford et al. 2014a

Include intrinsic clustering term where populations overlap:

$$w_{opt}(R,z) = f_{lens}(z) \cdot w_{lens}(R,z) + f_{clustering}(z) \cdot w_{clustering}(R,z)$$

## Cluster Weak Lensing in CFHTLenS

### N<sub>200</sub>-binned Shear



Perfectly centered model

Full model including miscentering

Ford et al. 2014b

### Miscentering



Shear is much more sensitive to miscentering

⇒ now we FIT for the offsets

- $\sigma_{\text{off}}$  = width of the Gaussian offset distribution
- p<sub>cc</sub> = fraction of clusters that have been correctly centered

Ford et al. 2014a

$$P(R_{off}) = \frac{R_{off}}{\sigma_{off}^2} e^{-\frac{1}{2} \left(\frac{R_{off}}{\sigma_{off}}\right)^2}$$





Ford et al. 2014b

### N<sub>200</sub>-binned Shear



### **Mass-Richness Scaling**



$$M_{200} = M_0 \left(\frac{N_{200}}{20}\right)^{\beta}$$

#### **Shear:**

$$M_0 = (3.1 \pm 0.5) \times 10^{13} M_{sun}$$
  
 $\beta = 1.5 \pm 0.2$ 

#### vs. Magnification:

$$M_0 = (2.2 \pm 0.2) \times 10^{13} M_{sun}$$
  
 $\beta = 1.5 \pm 0.1$ 

### **Redshift Evolution?**



### **Redshift Evolution?**



### Shear vs. Magnification



Ford et al. 2014b

Richness Binned: Magnification masses consistent with shear but biased low.

Mass-Richness Scaling: Slope is consistent, normalization 2σ off

Redshift Binned: Shear masses are steady, magnification masses fluctuate...

### Shear vs. Magnification







### **Future Work**

- Shear-magnification discrepancies: magnification comes from free in any shear survey... how to optimally use observational data?
- 3D-MF Cluster follow-up: miscentering analysis, comparing alternative centers,  $L_X$ -M scaling, SZ-lensing cross-correlations, detecting filaments, and more...
- Open Source Project: cleaning up code for magnification analysis and miscentering modeling (github repository coming soon)
- Can we detect dust? Dust extinction is  $\lambda$ -dependant, so in principle separable from the magnification signal (e.g. Hildebrandt et al. 2013)

### Summary

#### **COSMOS Magnification**

Ford et al. 2012 - arXiv: 1111.3698



1st magnification detection and shear comparison for galaxy clusters

Full redshift and richness binned analysis of cluster magnification and shear

#### **CFHTLenS Magnification**

Ford et al. 2014a - arXiv: 1310.2295



#### **CFHTLenS: Shear vs. Magnification**

Ford et al. 2014b - arXiv: 1409.3571



PUBLICLY AVAILABLE CLUSTER CATALOG:

cfhtlens.org

Thanks for Listening!